Jessica Loo

Logo

PhD Student, Duke University

View My CV

View My Google Scholar Profile

View My GitHub Profile

Biography

I am currently a PhD student in the Department of Biomedical Engineering, Duke University under the advisement of Dr. Sina Farsiu. My research focuses on developing image analysis algorithms to aid clinicians in diagnosing, monitoring, and treating ophthalmic diseases. Working closely with clinical collaborators, primarily at the Duke Reading Center, our algorithms are applied to a wide range of ophthalmic diseases and imaging modalities from several clinical studies and trials.

Selected Journal Publications

2021

Open-source automatic segmentation of ocular structures and biomarkers of microbial keratitis on slit-lamp photography images using deep learning
J. Loo, M. F. Kriegel, M. M. Tuohy, K. H. Kim, V. Prajna, M. A. Woodward, and S. Farsiu
IEEE Journal of Biomedical and Health Informatics 25(1), 88-99, January 2021

2020

Deep learning-based classification and segmentation of retinal cavitations on optical coherence tomography images of macular telangiectasia type 2
J. Loo, C. X. Cai, J. Choong, E. Y. Chew, M. Friedlander, G. J. Jaffe, and S. Farsiu
British Journal of Ophthalmology (in press), 2020

Measurement Reliability for Keratitis Morphology
M. F. Kriegel, J. Loo, S. Farsiu, V. Prajna, M. Tuohy, K. H. Kim, A. N. Valicevic, L. M. Niziol, H. Tan, H. A. Ashfaq, D. Ballouz, and M. A. Woodward
Cornea 39(12), 1503-1509, December 2020

Beyond Performance Metrics: Automatic Deep Learning Retinal OCT Analysis Reproduces Clinical Trial Outcome
J. Loo, T. E. Clemons, E. Y. Chew, M. Friedlander, G. J. Jaffe, and S. Farsiu
Ophthalmology 127(6), 793-801, June 2020

2019

Computational modeling of retinal hypoxia and photoreceptor degeneration in patients with age-related macular degeneration
K. J. McHugh, D. Li, J. C. Wang, L. Kwark, J. Loo, V. Macha, S. Farsiu, L. A. Kim, and M. Saint-Geniez
PLoS ONE 14(6), e0216215, June 2019

2018

Deep longitudinal transfer learning-based automatic segmentation of photoreceptor ellipsoid zone defects on optical coherence tomography images of macular telangiectasia type 2
J. Loo, L. Fang, D. Cunefare, G. J. Jaffe, and S. Farsiu
Biomedical Optics Express 9(6), 2681-2698, June 2018

Selected Conference Presentations

2020

Deep learning-based automatic segmentation of retinal cavitations on OCT images of MacTel2
J. Loo, C. X. Cai, E. Y. Chew, M. Friedlander, G. J. Jaffe, and S. Farsiu
ARVO Annual Meeting, Baltimore, MD, May 2020*

Deep learning-based automatic segmentation of intact ellipsoid zone area on optical coherence tomography images of USH2A-related retinal degeneration
S. Farsiu, J. Loo, J. L. Duncan, D. G. Birch, and G. J. Jaffe
ARVO Annual Meeting, Baltimore, MD, May 2020*

In-vivo quantitative analysis of pterygium volume using anterior segment optical coherence tomography imaging
S. Onal, J. Loo, T. Nguyen, M. Cherukury, S. Farsiu, and G. J. Jaffe
ARVO Annual Meeting, Baltimore, MD, May 2020*

Meta-learning approach to automatically register multivendor retinal images
A. Hasan, Z. Deng, J. Loo, D. Mukherjee, J. L. Duncan, D. G Birch, G. J. Jaffe, and S. Farsiu
ARVO Annual Meeting, Baltimore, MD, May 2020*

*Conference was cancelled due to COVID-19

2019

Automatic Deep Learning OCT Analysis Algorithm Reliably Reproduces Expert-Evaluated Outcome of a Randomized Clinical Trial for Macular Telangiectasia Type 2 Treatment
J. Loo, T. E. Clemons, E. Y. Chew, M. Friedlander, G. J. Jaffe, and S. Farsiu
ARVO Annual Meeting, Vancouver, BC, April 2019 (Poster)

Deep learning-based automatic segmentation of stromal infiltrates and associated biomarkers on slit-lamp images of microbial keratitis
S. Farsiu, J. Loo, M. F. Kriegel, M. Tuohy, V. Prajna, and M. A. Woodward
ARVO Annual Meeting, Vancouver, BC, April 2019 (Poster)

Reliability of physicians’ measurements when manually annotating images of microbial keratitis
M. F. Kriegel, J. Loo, V. Prajna, S. Farsiu, M. Tuohy, P. M. Gompa, L. Niziol, and M. A. Woodward
ARVO Annual Meeting, Vancouver, BC, April 2019 (Poster)

Deep Learning Retinal OCT Analysis Reliably Predicts the Outcome of a Real-World Clinical Trial
J. Loo, T. E. Clemons, E. Y. Chew, M. Friedlander, G. J. Jaffe, and S. Farsiu
SPIE Ophthalmic Technologies XXIX, San Francisco, CA, February 2019 (Talk)

2018

Deep learning-based automatic segmentation of ellipsoid zone defects in optical coherence tomography images of macular telangiectasia type 2
J. Loo, L. Fang, D. Cunefare, G. J. Jaffe, and S. Farsiu
ARVO Annual Meeting, Honolulu, HI, April 2018 (Talk)